Strongly Gorenstein injective complexes with respect to a cotorsion pair

Kaiying Yuan

Abstract-This paper introduces strongly Gorenstein injective complexes with respect to a cotorsion pair (A, B), that is, strongly Gorenstein $(A \cap B, B)$ -injective complexes, and give some properties and equivalent characterizations. Firstly, we define Gorenstein $(A \cap B, B)$ -injective complexes, that is the complexes of Gorenstein $(A \cap B, B)$ -injective modules, and discuss some properties. Secondly, we define strongly Gorenstein $(A \cap B, B)$ -injective complexes, and prove Gorenstein $(A \cap B, B)$ -injective complexes, and prove strongly Gorenstein $(A \cap B, B)$ -injective complex.

Index Terms—Cotorsion pair, Gorenstein injective complexes with respect to a cotorsion pair, Strongly Gorenstein injective complexes with respect to a cotorsion pair, stability.

I. INTRODUCTION

As a generalization of projective, injective and flat complexes, Enochs et al introduced Gorenstein projective, injective and flat complexes, and developed Gorenstein homological algebra in the category of complexes in [2]. Renyu Zhao and Pengju Ma introduced Gorenstein projective complexes with respect to a cotorsion pair, that is Gorenstein $(A \cap B, B)$ -projective complexes in [5], and investigate stability of Gorenstein $(A, A \cap B)$ -projective complexes.

Definition 1.1 ([1. Definition 3.3]) Let R is a ring, X is a complexe.

(1) A complex X is called A complex, if X is exact and $Z_n(X) \in A, n \in Z$.

(2) A complex X is called B complex, if X is exact and $Z_n(X) \in B, n \in \mathbb{Z}$.

(3) A complex X is called dg-A complex, if $X_n \in A$ and Hom_R(X, B) is exact, $B \in B$.

(4) A complex X is called dg-B complex, if $X_n \in B$ and Hom_R(X,A) is exact, $A \in A$.

Lemma 1.2. Let (A, B) is a complete and hereditary cotorsion pair in R-Mod, then derived cotorsion pair $(\tilde{A}, dg\tilde{B})$ and $(dg\tilde{A}, \tilde{B})$ is complete and hereditary in C(R). Furthermore, $dg\tilde{A} \cap \varepsilon = \tilde{A}, dg\tilde{B} \cap \varepsilon = \tilde{B}$, where ε is the class of exact complexes.

II. GORENSTEIN INJECTIVE COMPLEXES WITH RESPECT TO A COTORSION PAIR

Definition 2.1. A complex *C* is called Gorenstein injective complex with respect to a cotorsion pair, that is Gorenstein $(A \cap B, B)$ -injective complex, if there exists a Hom_{*C*(*R*)} $(\widehat{A \cap B}, -)$ -exact exact sequence

 $\cdots \rightarrow Y^1 \rightarrow Y^0 \rightarrow Y^{-1} \rightarrow \cdots$

such that $C \cong Im(Y^0 \to Y^{-1})$, whenever $Y^i \in \tilde{B}$.

We use $Gl_{(\widehat{A\cap B},\widehat{B})}$ express the class of Gorenstein $(A \cap B, B)$ -injective complexes.

Remark 2.2. (1) It is clear that $\tilde{B} \subseteq GI_{(A \cap B, \tilde{B})}$. If

$$\mathbf{Y} = \cdots \to \mathbf{Y}^1 \to \mathbf{Y}^0 \to \mathbf{Y}^{-1} \to \cdots$$

is a $\operatorname{Hom}_{\mathcal{C}(\mathcal{R})}(\widetilde{A \cap B}, -)$ -exact exact sequence of complexes, then all Kernels, Imagrs, Cokernels of Y belong to $GI_{(\widetilde{A \cap B}, \widetilde{B})}$.

(2) If (A,B) = (R - Mod, I), then we have the fact that Gorenstein injective complexes are Gorenstein injective complexes with respect to the cotorsion pair (R - Mod, I) by [2].

(3) If (A,B) = (P, R - Mod), then every complex is Gorenstein injective complex with respect to the cotorsion pair (P, R - Mod).

Lemma 2.3. Let $\cdots \to Y^1 \to Y^0 \to Y^{-1} \to \cdots$ is a Hom_{*C*(*R*)} $(\widehat{A \cap B}, -)$ -exact exact sequence, then the sequence $\cdots \to Y_n^1 \to Y_n^0 \to Y_n^{-1} \to \cdots$ is Hom_R $(A \cap B, -)$ -exact, where $n \in \mathbb{Z}$.

Proof. Let $K \in A \cap B$ and $n \in \mathbb{Z}$, then we have $K[n] \in \widetilde{A \cap B}$ by [3. Lemma 3.4], then we have the following exact sequence $\cdots \rightarrow \operatorname{Hom}_{C(\mathbb{R})}(\overline{K}[n], B^{1}) \rightarrow \operatorname{Hom}_{C(\mathbb{R})}(\overline{K}[n], B^{0}) \rightarrow \operatorname{Hom}_{C(\mathbb{R})}(\overline{K}[n], B^{0})$

 $\operatorname{Hom}_{\mathcal{C}(\mathcal{R})}(\overline{K}[n], B^{-1}) \to \cdots$

we have the following exact sequence by standard adjuction in [3. Lemma 3.1(2)].

 $\cdots \to \operatorname{Hom}_{\mathbb{R}}(K, \mathcal{B}_{n}^{1}) \to \operatorname{Hom}_{C(\mathbb{R})}(K, \mathcal{B}_{n}^{0}) \to \operatorname{Hom}_{C(\mathbb{R})}(K, \mathcal{B}_{n}^{-1})$ $\to \cdots$

Theorem 2.4. Let C is a complex, then $C \in GI_{(\widehat{A\cap B},\widehat{B})}$ if and only if $C_n \in GI_{(A\cap B,\overline{B})}$.

Proof. \Rightarrow) Assume that $C \in GI_{(\widetilde{A \cap B}, \widetilde{B})}$. Then there exists an $\operatorname{Hom}_{\mathcal{C}(R)}(\widetilde{A \cap B}, -)$ -exact exact sequence

 $\cdots \longrightarrow Y^{1} \longrightarrow Y^{0} \longrightarrow Y^{-1} \longrightarrow \cdots$

with each $Y^i \in \tilde{B}$ such that $C \cong \text{Im} (Y^0 \to Y^{-1})$. Now for any but fixed $n \in \mathbb{Z}$, by Lemma 2.3, we have the following $\text{Hom}_{\mathbb{R}}(A \cap B, -)$ -exact exact sequence of modules in Y

Kaiying Yuan, Collage of Mathematics and Statistics, Northwest Normal University, Lanzhou, China, Mobile: 86-13321317830

 $\cdots \rightarrow Y_n^1 \rightarrow Y_n^0 \rightarrow Y_n^{-1} \rightarrow \cdots$

such that $C_n = \text{Im} (Y_n^0 \rightarrow Y_n^{-1})$, then $C_n \in GI_{(A \cap B, B)}$.

⇐) Suppose that $C_n \in GI_{(A\cap B,B)}$ for all $n \in \mathbb{Z}$. Then for any $n \in \mathbb{Z}$, there exists an exact sequence

$$0 \rightarrow L_n \rightarrow B_n \rightarrow C_n \rightarrow 0$$

where $B_n \in B$, $L_n \in GI_{(A\cap B,B)}$, $n \in \mathbb{Z}$. These exact sequences induce a short exact sequences of complexes

 $0 {\rightarrow} \oplus_{n \in \mathbb{Z}} \overline{L_n}[n] {\rightarrow} \oplus_{n \in \mathbb{Z}} \overline{B_n}[n] {\rightarrow} \oplus_{n \in \mathbb{Z}} \overline{C_n}[n] {\rightarrow} 0$

Put $B^0 = \bigoplus_{n \in \mathbb{Z}} \overline{B_n[n]}$. It is easy to see that $B^0 \in \tilde{B}$. On the other hand, there is an obvious short exact sequence

$$0 \to \mathsf{C}[-1] \xrightarrow{\binom{1}{-\delta}} \bigoplus_{n \in \mathbb{Z}} \overline{C_n}[n-1] \xrightarrow{\binom{\delta}{-1}} \mathsf{C} \to \mathsf{C}$$

where δ is the differential of *C*, Now Let α : $B^0 \to C$ be the composite

$$\bigoplus_{n \in \mathbb{Z}} \overline{B_n}[n] \longrightarrow \bigoplus_{n \in \mathbb{Z}} \overline{C_n}[n] \rightarrow \mathbb{C}$$

Then α is monomorphism since it is the composite of two injection. Denote Coker α by C^{0} . Then by Snake Lemma, we have a short exact sequence

 $0 \longrightarrow \bigoplus_{n \in \mathbb{Z}} \overline{L_n}[n] \longrightarrow C^0 \longrightarrow C[-1] \rightarrow 0$

Since each degree of $\bigoplus_{n \in \mathbb{Z}} \overline{L_n}[n]$ and $\mathbb{C}[-1]$ are in $GI_{(A \cap B, B)}$. Let $K \in \widetilde{A \cap B}$. Thus $K \cong \bigoplus_{n \in \mathbb{Z}} \overline{Z_n(K)}[n]$ by [4. Lemma 4.1.]. Hence

 $Ext^{1}_{\mathcal{C}(\mathcal{R})}(K, \mathbb{C}^{0}) \cong \prod_{n \in \mathbb{Z}} Ext^{1}_{\mathcal{C}(\mathcal{R})}(\overline{Z_{n}(K)}[n], \mathbb{C}^{0}) \cong \prod_{n \in \mathbb{Z}} Ext^{1}_{\mathcal{C}(\mathcal{R})}(Z_{n}(K), \mathbb{C}^{0}_{n}) = 0$

Where the second isomorphism follows from [5. Lemma 3.1.(2)] and the last equality follows from Proposition 2.3. This implies that $0 \rightarrow C^0 \rightarrow B^0 \rightarrow C \rightarrow 0$ is $\operatorname{Hom}_{C(R)}(\widetilde{A \cap B}, -)$ -exact. Notice that C^0 has the same property as C, so we can use the same procedure to construct a $\operatorname{Hom}_{C(R)}(\widetilde{A \cap B}, -)$ -exact exact sequence

$$\cdots \to B^{-1} \to B^{\mathbb{C}} \to \mathbb{C} \to 0 \quad (*)$$

where each B^{i} is an B-complexes.

Since $(dg\widetilde{A}, \widetilde{B})$ is complete cotorsion pair, we have a short exact sequence

$$) \rightarrow \mathsf{C} \rightarrow B^{-1} \rightarrow C^{-1} \rightarrow 0$$

where $B^{-1} \in \tilde{B}$ and $C^{-1} \in dg\tilde{A}$. Note that $C_n \in GI_{(A\cap B,B)}$ for any $n \in \mathbb{Z}$, this sequence is $\operatorname{Hom}_{C(R)}(\widetilde{A \cap B}, -)$ -exact by a similarly discussion as above. Also, it follows from exact sequence and [6. Proposition 3.3.(1)] that each $C_n^{-1} \in GI_{(A\cap B,B)}$ for any $n \in \mathbb{Z}$. Thus we can continuously use the same method to contruct a $\operatorname{Hom}_{C(R)}(\widetilde{A \cap B}, -)$ -exact exact sequence

 $0 \longrightarrow \mathbf{C} \longrightarrow \mathbf{B}^{-1} \longrightarrow \mathbf{B}^{-2} \longrightarrow \cdots \quad (**)$

where each B^{i} is a *B*-complexes.

Finally, gluing the sequence (*) and (**) together, one has a $\operatorname{Hom}_{\mathcal{C}(\mathcal{R})}(\widetilde{A \cap B}, -)$ -exact exact sequence of complexes

 $\cdots \longrightarrow B^1 \longrightarrow B^0 \longrightarrow B^{-1} \longrightarrow \cdots$

with all $B^1 \in \tilde{B}$ such that $C \cong \text{Im} (B^0 \to B^{-1})$. Hence $C \in GI_{(\widetilde{A \cap B}, \widetilde{B})}$.

Corollary 2.5. $GI_{(\widehat{A\cap B},\widehat{B})}$ is injectively coresolving.

Proof. Clearly, $\tilde{I} \subseteq \tilde{B} \subseteq GI_{(\widetilde{A \cap B}, \widetilde{B})}$ Let

$$0 \to \mathbf{C'} \to C \to \mathbf{C''} \to 0$$

be a short exact sequence of complexes with $C' \in GI_{(\widehat{A\cap B},\widehat{B})}$. Then for any $n \in \mathbb{Z}$, in the exact sequence $0 \to C'_n \to C_n \to C''_n \to 0$, $C''_n \in GI_{(A\cap B,B)}$ so $C''_n \in GI_{(A\cap B,B)}$ if and only if $C_n \in GI_{(A\cap B,B)}$ by [6. Proposition 3.4.(1)]. Hence $C'' \in GI_{(\widehat{A\cap B},\widehat{B})}$ if and only if $C \in GI_{(\widehat{A\cap B},\widehat{B})}$ by Theorem 2.4. Now the result follows.

Corollary 2.6. Let $0 \rightarrow C' \rightarrow C \rightarrow C'' \rightarrow 0$

be a short exact sequence of complexes. If C', C are belong to $GI_{(\widehat{A\cap B}, \widehat{B})}$, then $C'' \in GI_{(\widehat{A\cap B}, \widehat{B})}$ if and only if $Ext^{1}_{C(R)}(C'', K)$ for any $K \in \widehat{A \cap B}$.

Proof. \Rightarrow) it is obvious.

 \Leftarrow) Let $n \in Z$. Consider the exact sequence of R-modules

$$0 \to \mathbf{C}'_n \to \mathbf{C}_n \to \mathbf{C}''_n \to 0$$

By theorem 2.4, C_n , C''_n are belong to $GI_{(A \cap B,B)}$. Let $K \in A \cap B$. Then $\overline{K}[n] \in \overline{A \cap B}$. Thus

$$Ext^{1}_{R}(\mathbf{K}, C'_{n}) \cong Ext^{1}_{C(R)}(\overline{K}[n], C') = 0$$

by [1. Lemma 3.1.(1)] and the hypothesis. Hence $C'_n \in GI_{(A\cap B,B)}$ by [6. Proposition 3.4.(2)]. Therefore $C'_n \in GI_{(\widehat{A\cap B},\widehat{B})}$ by Theorem 2.4.

Proposition 2.7. Let C be a complex of R-modules. Then the following statements are equivalent:

(1) $C \in GI_{(\widehat{A \cap B}, \widehat{B})}$.

(2) $Ext^{i}_{C(R)}(A \cap B, C)=0$ for any $i \ge 1$ and there exists a $Hom_{C(R)}(A \cap B, -)$ -exact exact sequence

$$\cdots \longrightarrow B^1 \longrightarrow B^0 \longrightarrow C \longrightarrow 0$$

where $B^i \in \tilde{B}$.

Proof. It is similar to the proof of proposition 2.3.

Lemma 2.8. $GI_{(\widehat{A\cap B}, \widehat{B})}$ is closed under direct products and direct summands for any a ring R.

Proof. $GI_{(\widehat{A\cap B},\widehat{B})}$ is closed under direct products by Proposition 2.7. since $GI_{(\widehat{A\cap B},\widehat{B})}$ is injectively coresolving and closed under direct products, then $GI_{(\widehat{A\cap B},\widehat{B})}$ is closed under direct summands by [8. Proposition 1.4.].

submission.

III. STRONGLY GORENSTEIN INJECTIVE COMPLEXES WITH RESPECT TO A COTORSION PAIR

Definition 3.1. A complex *C* is called Strongly Gorenstein injective complexes with respect to a cotorsion pair, that is Strongly Gorenstein $(A \cap B, B)$ -injective complexes, if there exists an $\operatorname{Hom}_{\mathcal{C}(\mathcal{R})}(\widetilde{A \cap B}, -)$ -exact exact sequence

 $\cdots \longrightarrow Y \longrightarrow Y \longrightarrow Y \longrightarrow \cdots$

such that $C = \text{Im}(\mathbb{Y} \to \mathbb{Y})$, whenever $\mathbb{Y} \in \tilde{\mathcal{B}}$.

We use $SGI_{(\widehat{A\cap B},\widehat{B})}$ express the class of Strongly Gorenstein $(A \cap B, B)$ -injective complexes

Proposition 3.2. Let C be a complex of R-modules. Then the following statements are equivalent:

(1) $C \in SGI_{(\widehat{A\cap B},\widehat{B})}$.

(2) there exists a short exact sequence of complexes $0 \rightarrow C \rightarrow B \rightarrow C \rightarrow 0$

where $\mathbf{B} \in \widetilde{B}$ such that $Ext^{i}_{C(\mathbb{R})}(Q, \mathbb{C}) = 0$ for any $Q \in \widetilde{A \cap B}$,

i≥1.

(3) there exists a short exact sequence of complexes $0 \rightarrow C \rightarrow B \rightarrow C \rightarrow 0$

where $\mathbf{B} \in \tilde{B}$ such that $Ext^{1}_{C(R)}(Q, C) = 0$ for any $Q \in \widetilde{A \cap B}$. (4) there exists a short exact sequence of complexes

$$0 \rightarrow \mathbf{C} \rightarrow \mathbf{B} \rightarrow \mathbf{C} \rightarrow 0$$

where $\mathbf{B} \in \widetilde{B}$ such that $Ext^{i}_{\mathcal{C}(\mathcal{R})}(\mathcal{Q}, \mathbb{C}) = 0$ for any $Q \in \widetilde{A \cap B}$, some $i \ge 1$.

Proof. It is similar to the proof of [7. Proposition 2.10.] and [4. Remark 2.3.].

Theorem 3.3. A complex C is Gorenstein $(A \cap B, B)$ -injective complex if and only if C is a summand of some Strongly Gorenstein $(A \cap B, B)$ -injective complex.

Proof. \Leftarrow) since $SGI_{(\widehat{A\cap B},\widehat{B})} \subseteq GI_{(\widehat{A\cap B},\widehat{B})}$, we have the fact $GI_{(\widehat{A\cap B},\widehat{B})}$ is closed under direct summands by Lemma 2.8.so C

is Gorenstein $(A \cap B, B)$ -injective complexes.

 \Rightarrow) Assume *C* is Gorenstein $(A \cap B, B)$ -injective complex, there exists an $\operatorname{Hom}_{C(R)}(\widetilde{A \cap B}, -)$ -exact exact sequence

$$\boldsymbol{B} = \cdots \xrightarrow{d_B^2} B^1 \xrightarrow{d_B^1} B^0 \xrightarrow{d_B^0} B^{-1} \xrightarrow{d_B^{-1}} \cdots$$

such that $C \cong \text{Im} (d_B^0)$, whenever $B^i \in \tilde{B}$. $(\Sigma^m B)^i = B_{i-m}$ and $d_{\Sigma^m B}^i = d_B^{i-m}$, $i \in \mathbb{Z}$, consider exact sequence

 $\mathbf{N} = \bigoplus (\Sigma^{m} \mathbf{B}) = \cdots \xrightarrow{\bigoplus d_{k}^{i}} N = \bigoplus B_{i} \xrightarrow{\bigoplus d_{k}^{i}} N = \bigoplus B_{i} \xrightarrow{\bigoplus d_{k}^{i}} N = \bigoplus B_{i} \xrightarrow{\bigoplus d_{k}^{i}} \cdots$

since $\operatorname{Im}(\oplus d_{B}^{i}) \cong \oplus \operatorname{Im} d_{B}^{i}$, then C is a summand of $\operatorname{Im}(\oplus d_{B}^{i})$. N is $\operatorname{Hom}_{C(R)}(\widehat{A \cap B}, -)$ -exact by [8 proposition 20.2.]. so C is a summand of Strongly Gorenstein $(A \cap B, B)$ -injective complex $\operatorname{Im}(\oplus d_{B}^{i})$.

REFERENCES

- J. Gillespie. The flat model structure on Ch(R) [J], Trans. Amer. Math. Soc. 365(2004), 167-193.
- [2] E. E. Enochs, J. R. Garcia Rozas. Gorenstein injective and projective complexes [J], Comm. Alg. 26(1998), 1657-1674.
- [3] Q. X. Pan, F.Q. Cai. (X,Y)-Gorenstein projective and injective modules [J], Turkish. J. Math. 39(2015): 81-90.
- [4] X. Y. Yang, Z. K. Liu. Strongly Gorenstein projective, injective and flat modules [J], J. Algebra, 320(2008): 2659-2674.
- [5] R. Y. Zhao, P. J. Ma. Gorenstein projective complexes with respect to cotorsion pairs [J]. J. Czechoslovak Math. 10(2018) 1-13.
- [6] J. S. Hu, H. H. Li, J. Q. Wei, X. Y. Yang, N. Q. Ding. Cotorsion pairs, Gorenstein dimension and triangle-equivalences [J], math. RA. 2017.
- [7] E. E. Enochs, O. M. G. Jenda. Relative Homological Algebra [M], Walter de Gruyter, Berlin-New York. 2000.
- [8] H. Holm. Gorenstein homological dimension [J], J. Pure Appl. Algebra. 2004, 189(1): 167-193.

Kaiying Yuan, Collage of Mathematics and Statistics, Northwest Normal University, Lanzhou, China